
UCRL-MI-203744 
 

 

Attachment 1 
 

Statement of Work for the 
Open Source Parallel Performance Measurement 

Package 
 

National Nuclear Security Administration 
Advanced Simulation and Computing 

PathForward Program 
 

April 13, 2004 

 
 

 

 

 

 

 

 

 

 

 

 

 



OSPPMP SOW   

 

Contents 
INTRODUCTION ........................................................................................................................................ 3 

1 REQUIREMENTS.............................................................................................................................. 3 

1.1 SOFTWARE FUNCTIONALITY:  APPLICATIONS TO BE MEASURED.................................................. 3 
1.2 SOFTWARE FUNCTIONALITY – THE PERFORMANCE MEASUREMENTS AND REPORTS AVAILABLE 4 
1.3 OPEN SOURCE SOFTWARE............................................................................................................ 4 
1.4 OPERATING SYSTEMS AND HARDWARE ENVIRONMENTS SUPPORTED.......................................... 5 
1.5 EXTENSIBILITY AND USABILITY OF DESIGN ................................................................................. 5 
1.6 SOFTWARE MAINTENANCE AND SUPPORT.................................................................................... 6 

 

 - 2 - 



OSPPMP SOW   

INTRODUCTION 
The purpose of this Statement of Work is to describe an open source development effort 
to produce a Parallel Performance Measurement Package (PPMP) generally aimed at the 
needs of the High Performance Technical Computing community and, in particular, the 
needs of the National Nuclear Security Administration (NNSA) and the Advanced 
Simulation and Computing (ASC) Program parallel capacity computing systems.  The 
University requires an open source software tool, or suite of integrated open source 
software tools, with a common look and feel, that will provide a collection of basic 
measurements to give insight into the performance of parallel programs. 

1 REQUIREMENTS 
The specific Mandatory Requirements the software shall meet are delineated with a 
“MR” designation. Software technical Target Requirements that are highly desirable, but 
not mandatory, are delineated with a “TR-1” designation. 

In addition to the Mandatory Requirements, the Offeror may propose any Target 
Requirements for the software, and any additional features consistent with the objectives 
of this project and the Offeror’s project plan that the Offeror believes will be of benefit to 
the University. Target Requirements and additional features proposed by the successful 
Offeror may be included in the resulting Subcontract. 

1.1 Software Functionality:  Applications to be Measured 

1.1.1 The software shall report performance for parallel applications written in a 
combination of languages (at least Fortran90, C++, C). Performance results shall 
be available from the executable file with no recompilation or relink required.  If 
the application has been compiled with symbol tables, trace back to source shall 
be available. The software shall work with parallel applications using the Message 
Passing Interface (MPI) communication library. The software shall also work 
with single task applications that do not involve MPI. [MR]  

1.1.2 The software performing measurements shall function in both interactive and 
batch modes with a choice of Graphic User Interface (GUI) or command line 
interfaces when interactive mode. [MR]  

1.1.3 The software should work with applications that invoke dynamic-linked libraries. 
[TR-1] 

1.1.4 The software should work with optimized object files. Describe any limitations 
imposed by compiler optimization. [TR-1]  

1.1.5 The software should work with applications that use OpenMP directives for 
thread parallelism. [TR-1] 

1.1.6 The software should be able to attach to an already running job to collect 
performance measurements.  [TR-1] 

 - 3 - 



OSPPMP SOW   

1.1.7 Use of the software should be scriptable so that it can be invoked from other tools. 
[TR-1] 

1.2 Software Functionality – the Performance Measurements and Reports 
Available 

1.2.1 Basic application performance reports available shall support results from 
hardware counters applied at function level, time profiling at the function level, 
profiling from program counter sampling, and statistics from MPI usage by call 
type. [MR]  

1.2.2 Performance measurement reports shall be available both in interactive GUI 
format and in text (see 1.2.7) formats.  The interactive GUI format should include 
a display to tie the measurements back to source code.  The text formats are 
especially intended to facilitate, but not be limited to, collection of measurements 
from batch runs of the application.  [MR] 

1.2.3 The software should support performance measurements for MPI call tracing, 
statistics from I/O (input/output) interfaces, I/O call tracing, thread specific profile 
and hardware counter data, heap and memory consumption statistics. [TR-1]  

1.2.4 Statistics reported at the function level should include data that is both inclusive 
and exclusive of functions called from within the function. [TR-1] 

1.2.5 Statistics at a finer grain, e.g. object, block or line level should be possible. 
Describe what mechanisms are available for this. [TR-1] 

1.2.6 For some statistics, such as MPI call usage, a multi-level function or object 
traceback should be available to distinguish between various invocations.  
Describe which of the measurements provided will include this feature. [TR-1]  

1.2.7 Text reports of measurement results should be available with mark-up-language 
commands imbedded, e.g., HTML, to facilitate readability and embedding 
graphics. In addition, or alternatively, the results might be available in a 
commonly available spreadsheet or database format. Describe your approach for 
various kinds of measurements. [TR-1] 

1.2.8 Other measurements that tie to event-based data, such as timers or interrupts 
based on hardware counter thresholds, are also of interest.  Describe any 
functionality supported. [TR-1] 

1.3 Open Source Software 

1.3.1 All software developed under this Subcontract shall be released under a 
University approved Open Source license (see the Sample Subcontract) and 
delivered to the University with source code. [MR]  

1.3.2 End user documentation, component interface documentation, application 
programming interface (API) documentation and software test suites should be 
provided as part of the open source release.  The methods used for documentation 

 - 4 - 



OSPPMP SOW   

and testing should be broadly available—not requiring proprietary products with 
limited access. [TR-1]  

1.3.3 Read/Write access to the software source repository should be provided to at least 
one person, designated by the University, at each of LLNL, LANL, and SNL. 
Read access to the software should be broadly available. Describe the software 
gatekeeper plans. [TR-1] 

1.4 Operating Systems and Hardware Environments Supported 

1.4.1 The software shall be deployed and tested on the Intel Product Family including 
Pentium 4, IA-64, and X86-64 architectures. The software shall also be tested on 
the AMD Opteron-based architecture in both 32 and 64 bit modes. [MR]  

1.4.2 The software shall measure performance for applications built with GNU 
compilers and running on parallel Linux clusters. Support for clusters using an OS 
image per node (with or without disks) and clusters using a single system image 
model, specifically BProc Linux, shall be required.  [MR] 

1.4.3 The software should measure performance for applications built with other 
vendor-supported compilers, specifically the Intel compiler suite (Intel C/C++ and 
Intel Fortran on the Pentium 4 and IA64 architectures. For the Opeteron 
architecture, the compilers of interest are Portland Group and the Absoft and 
Lahey Fortran compilers. [TR-1] 

1.4.4 It should be routine to use the software to measure performance on jobs of up to 
256 tasks. The time to initiate a performance measurement for 256 MPI tasks of 
one of the demonstration codes should not exceed two minutes longer than the 
time to initiate the application without the measurement. [TR-1] 

1.4.5 It should be possible to use the software to measure performance on jobs 
involving thousands or tens of thousands of tasks/threads.  Describe how the 
software will address very large parallelism. Which measurements will be 
supported at large scale?  Which measurements will require special approaches? 
An example of an acceptable approach to large-scale parallel jobs is to involve 
some subset mechanism to limit volume of data or make GUI display tractable.  
[TR-1] 

1.5 Extensibility and Usability of Design  

1.5.1 Documentation specifications of system interfaces and extensibility interfaces 
shall be provided to enable extending the work to other systems. [MR] 

1.5.2 New performance measurement features should be easy to add, both by the 
Offeror and by other collaborators working with the software. Describe the 
software architecture that will enable this. Examples are a measurement 
component architecture, a stack unwind library, program counter recording 
library, source line number and file name lookup library. [TR-1] 

 - 5 - 

http://bproc.sourceforge.net/


OSPPMP SOW   

1.5.3 The Offeror should provide an interface usability testing plan that will involve 
tests with University-designated users on real applications before the interfaces 
are finalized. [TR-1] 

1.5.4 The software should incorporate an approach to generation of trace files that will 
help control and minimize the size of files generated. At the same time, the 
technique should preserve the ability to read and initialize the analysis of the trace 
data in less than five minutes. [TR-1] 

1.5.5 To facilitate portability of software to other platforms, the Performance 
Application Programming Interface (PAPI) to the hardware counters should be 
supported. [TR-1] 

1.5.6 To facilitate the portability to Light-Weight-Kernel operating systems, the offeror 
should describe the software issues that will occur in an environment where there 
are no threads or sockets available on the nodes where the target applications run. 
[TR-1] 

1.5.7 Some target applications may involve hundreds of thousands of lines of source 
code, with thousands of functions, in hundreds of files, stored in tens of 
subdirectories. The software should support mechanisms to allow the user a 
“scalable” GUI for specification of what to measure. Similarly any GUI for 
viewing results needs to be designed in a way that is manageable for the large 
applications. For example, scrolling through an alphabetic list of all the function 
names in the application is not acceptable. Applications that involve “mangled” 
symbol names should present the names in a form recognizable by the user—not 
names that are hundreds of characters long. [TR-1] 

1.5.8 There should be mechanisms to establish initial defaults and preferences. In 
particular, it should not be required that the user enter long pathnames to identify 
target application directories over and over. There should be a way to save this 
state from one measurement experiment to the next. [TR-1]  

1.5.9 The GUI should support “cut and paste” functionality—especially where non-
default pathnames are to be specified. [TR-1] 

1.6 Software Maintenance and Support 

1.6.1 The Offeror shall continue serving as the open source gatekeeper, maintain all 
software documentation, and provide first line bug support for a period of two 
years after initial deployment of the software.  [MR] 

1.6.2 The Offeror shall provide enhancements as required by the University Technical 
Representative for a period of two years after initial deployment of the software.  
[MR] 

1.6.3 The Offeror shall continue efforts in the productization of the open source 
package for a period of two years after initial deployment of the software.  [MR] 

 

 - 6 - 

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

	INTRODUCTION
	REQUIREMENTS
	Software Functionality:  Applications to be Measured
	The software shall report performance for parallel applicati
	The software performing measurements shall function in both 
	The software should work with applications that invoke dynam
	The software should work with optimized object files. Descri
	The software should work with applications that use OpenMP d
	The software should be able to attach to an already running 
	Use of the software should be scriptable so that it can be i

	Software Functionality – the Performance Measurements and Re
	Basic application performance reports available shall suppor
	Performance measurement reports shall be available both in i
	The software should support performance measurements for MPI
	Statistics reported at the function level should include dat
	Statistics at a finer grain, e.g. object, block or line leve
	For some statistics, such as MPI call usage, a multi-level f
	Text reports of measurement results should be available with
	Other measurements that tie to event-based data, such as tim

	Open Source Software
	All software developed under this Subcontract shall be relea
	End user documentation, component interface documentation, a
	Read/Write access to the software source repository should b

	Operating Systems and Hardware Environments Supported
	The software shall be deployed and tested on the Intel Produ
	The software shall measure performance for applications buil
	The software should measure performance for applications built with other vendor-supported compilers, specifically the Intel compiler suite (Intel C/C++ and Intel Fortran on the Pe
	It should be routine to use the software to measure performa
	It should be possible to use the software to measure perform

	Extensibility and Usability of Design
	Documentation specifications of system interfaces and extens
	New performance measurement features should be easy to add, 
	The Offeror should provide an interface usability testing pl
	The software should incorporate an approach to generation of
	To facilitate portability of software to other platforms, th
	To facilitate the portability to Light-Weight-Kernel operati
	Some target applications may involve hundreds of thousands o
	There should be mechanisms to establish initial defaults and
	The GUI should support “cut and paste” functionality—especia

	Software Maintenance and Support
	The Offeror shall continue serving as the open source gateke
	The Offeror shall provide enhancements as required by the Un
	The Offeror shall continue efforts in the productization of 



